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Introduction (1/7)

Prediction-driven Optimal Decision-Making

“A pearl is worthless as long as it is in its shell.”

* Prediction-driven optimal decision-making is to train a prediction model first and adjust
the actionable input (e.g. price) to optimize prediction results.

* Although the prediction itself is valuable, action must be taken to utilize the prediction result
and realize its value.



Introduction (2/7)

Prediction-driven Optimal Decision-Making

* Prediction-driven optimal decision-making has been implemented by many existing papers.

* e.g., dynamic toll 'l and airline profit maximization >3] £
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* Based on the prediction results, an optimization problem is solved, either analytically or via
optimization algorithms.

* e.g., greedy and gradient-based optimization

[1] An et al. DyETC: Dynamic Electronic Toll Collection for Traffic Congestion Alleviation. AAAI, 2018.
[2] An et al. MAP: Frequency-based maximization of airline profits based on an ensemble forecasting approach. KDD, 2016.
[3] Li et al. Large-Scale Data-Driven Airline Market Influence Maximization. KDD, 2021.



Introduction (3/7)

Prediction-driven Optimization Dilemma

* Existing approaches failed to solve the prediction-driven optimization dilemma, which
states that if the speed is high, the quality of the solution is low, and if the quality is high, the

speed is low.

* However, we propose a “one-shot” prediction-based optimization model that can be quickly
solved in O(1) and has a high-quality solution.
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Introduction (4/7)

Dynamic Parking Pricing
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* Dynamic pricing is to dynamically adjust the price to meet demand.
* Many metropolitan cities are notorious for severe shortages of parking spots.

* The benefits of dynamic parking pricing

* reduced congestion, reduced time wasted, reduced pollution and increased revenue
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Introduction (5/7)

Dynamic Parking Pricing

* The parking price optimization problem can be formulated as adjusting prices to
minimize the error between predicted and target occupancy rates.

* Some papers % have adopted prediction-based optimization, formulating pricing
schemes based on predicted occupancy rates by implementing various machine learning

prediction models.

[5] Fabusuyi et al. Rethinking performance based parking pricing: A case study of SFpark. Transportation Research Part A: Policy and Practice 115, 90-101, 2018.
[6] Saharan et al. An efficient smart parking pricing system for smart city environment: A machine-learning based approach. Future Generation Computer Systems 106, 622-640, 2020.
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Introduction (6/7)

Main Contributions

1. We design a sophisticated future parking occupancy prediction model based on NODEs.

2. We propose a novel one-shot price optimization that can find the optimal price with a single
query, owing to the continuous and bijective characteristics of Neural ODEs.

Query
Dratirare < ,': _ -— ................... ................
T . . Optimal P :
Prediction Model Algorithm :> PHmAT TS ;
:{> 01117 —— :
Response

(a) Existing black-box query-based prediction-driven optimization

.................... T ................................... . P re _t rai ne d .
| arget : Prediction Model ~—— > Optimal Pri E
; ; . | ; al Price
Parking Occupancy :> (Reverse-mode) P

+ . B
.................................................................................................................

(b) Our “one-shot” white-box prediction-driven optimization
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Introduction (7/7)

Main Contributions

3. In our experiments with two real-world datasets, our prediction model outperforms many existing
temporal and spatiotemporal models.

4. Our one-shot optimization finds better solutions faster in comparison with other prediction-
driven optimization paradigms.



Preliminary (1/2)

Neural Ordinary Differential Equations (NODESs)

* We use neural ordinary differential equations #! for parking occupancy rate prediction.

* NODEs learn differential equations as a neural network. They solve the following integral
problem to calculate the last hidden vector z(T) from the initial vector z(0):

T
z(T) =2z(0) + f f(z(t); Bf)dt
0

0zZ(t)
ot

* where f (z(t); 6r), which we call the ODE function, is a neural network to learn

[4] Chen et al. Neural Ordinary Differential Equations. NeurlPS, 2018.
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Preliminary (2/2)

Neural Ordinary Differential Equations (NODES)

Reverse-mode Integral

* Our price optimization corresponds to finding the unique Z"(0) that leads z*(T).

* For finding Z" (0), we can solve the below reverse-mode integral problem of NODEs:

T
z*(0) = z*(T) —f f(z(t); 65)dt
0
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Method (1/5)

Parking Occupancy Prediction

Our prediction model consists of three modules:

* Actionable Input: an input that can be freely decided only for one’s own purposes

1. The initial prediction module with spatiotemporal processing " Price
. Atinbl ...... InUt NODE
* This processes the short-term and long-term occupancy rate Emm—— Price Reflection
: . C ay " . | Short-term _ ,_,| Short-term NODE Module
information and produces the initial occupancy rate prediction. | Occupancy | | layer [N\ RS
:'"'.'.':::::::::::::::::::::::::::::::::::::::::::.'"; concat Concatenated —> Zinjs
layer
Long-term Long-term 1 .................
1 . Occupancy 7T jayer il e
Zinit — C(l) — C(O) + f m(C(t), Hlong; em)dt leedmput ........... FC Layers Module Regressor [T—
0
NODE
C(O) — FCNXdim(Hshort)_)Nx1(Hsh0rt) g p e S I l ..................
- Belielet, 1 Final Prediction Module ~ [——  Zadusr
. U ccupancy ...... R

» Hg, .+ the output of short-term layer
» Hy,,,: the output of long-term layer

m(c(t), Hiong; Om) = (FCNx1—Nx1(11)),

41 €O 1 _ [rm(e(0) Hiongi0n) u1 =0 (FCNx1-Nx1 (#0))
dt Hlong 0 uo =O'(FCN><(L+1)—>NX1(C(t) N7 Hlong))
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Method (2/5)

Parking Occupancy Prediction

Our prediction model consists of three modules:

2. The price reflection mOdUIe Wlth the regressor o * Actionable Input: an input that can be freely decided only for one’s own purposes
. . . . . . . “tersennens i......[.].................--'{....,lil...-'. NODE
* This module adjusts Z;,;; created by the initial prediction module A;h ........ : b't"’ ....... S Price Reflection
to Z, i, € RY*! by considering the price information p  occupancy || | laver PN — = e
adjust ' 1§ Siiin i concat|Concatenated | . 5
N e Iayer init
Long-term U . s A SR ——
Occupancy : LOTSY;?M /Initial Prediction l
leedmput ........... e Module Regressor
(( o) b) NODEs [
Z . — Z' I c + R R AR Py g
adjust — “imit P ofﬁfﬁﬁgy - Final Prediction Module ~ fe—  Zadiur
................... e

> ¢ € [0,]": a coefficient vector

(the demand elasticity on price changes)
> b € RN*1: the bias vector
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Method (3/5)

Parking Occupancy Prediction

Our prediction model consists of three modules:

3 . Th e fi nal pred i cti on mOd u Ie Wl.t h ) Serl es Of N O D ES oo * Actionable Input: an input that can be freely decided only for one’s own purposes
This module evolves Z; jy,5¢ to the final prediction y € [0,1]( ), /" shortterm || Shorttem - Rice Fiefaction
® We ad O p't 'th e fol IOWi n g M N O D E |aye rs: Occupancy layer ckt‘ B csicraied ............... z .................
PP vor _> init
» Long-term P B A RN —
Occupancy ¢ LOTSY;?M /Initial Prediction l
X leedmput ........... e — Module Regressor
0=zt [ @08 |
1 OT:S ic;re‘g ‘ Final Prediction Module <— Zadjust
yi(1) = yi-1(1) +/O Ji(yi(t); 0;,)dt, 1 < i< M, 22 uf;m ....... Y./ R .-

1
ym(1) = ywo1 (1) + /0 iyt (8): 055, )dt

Ji(yi(t); 0j,) =Y (FCnx1—Nx1(01)),
i 01 =0(FCNx1-Nx1(00)),
where the future occupancy prediction y = y,,(1). 00 =0 (FCNx1-Nx1(Yi(t))).

14



Method (4/5)

Parking Price Optimization

Problem definition

* Given the short-term history information {S; }i 4, the long-term history information {1;};_;, and the
target occupancy rates Y, we want to find the optimal prices p™ that lead Y~ as follows:

argmin | Y-y
p N !
subject to Pmin S P < Pmax>
y — E(p*l {Si}{{=11 {ll}le) 9{)

where f IS our pre-trained occupancy prediction model.
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Method (5/5)

Parking Price Optimization

The following three steps comprise the optimization process:

3) Find optimal price p* satisfying Eq. (8).

1. We feed the given short-term and long-term history information and

derive z,,;, from the initial prediction module. Short-tom L Shortterm o [e—-——
| ey B ¢ | Concatenated _» e |
% . ...... ) conca Iayer === init
2. Set the target occupancy rates y* that we want to achieve and then 5223;:;2; p{ Long-tem P4 l

solve the series of reverse-mode integral problems to derive z,;, ;-  Fined Inpu Regressor

2)-Run ROEEsinveverse-moce to find7;, derivestarget cecupancy:

S : . — T
3. The optimal price vector p* can be calculated as follows: =3 L > .
Input

£ 3
«  Zinit—Zgdjust—b

p:

C
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Method (5/5)

Parking Price Optimization

The following three steps comprise the optimization process:

3) Find optimal price p* satisfying Eq. (8).

Price
| | | . S o
1. We feed the given short-term and long-term history information and ... S
derive z,,;, from the initial prediction module. "7 Short-term | Short-term

Occupancy Iayer \ C 3 ——,
...................................... c o n c at o n Cate n ate # Z init
. | Long-term : :

2. Set the target occupancy rates y™* that we want to achieve and then | Longtem [ iongtem | = =
i Occupancy | ayer

solve the series of reverse-mode integral problems to derive z,;, ;- — Exed Ious Rograssor

2) Run NODEs in reverse-mode to find z;,,, derives target occupancy.

S : . — T
3. The optimal price vector p* can be calculated as follows: =3 L > .
Input

£ 3
«  Zinit—Zgdjust—b

I’ —

C
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Method (5/5)

Parking Price Optimization

The following three steps comprise the optimization process:

3) Find optimal price p* satisfying Eq. (8).

Price
| | | . S o
1. We feed the given short-term and long-term history information and ... S
derive z,,;, from the initial prediction module. "7 Short-term | Short-term

Occupancy | layer \ —

. L o Goncar Comiatenated — z, .
. d ayer
2. Set the target occupancy rates y™ that we want to achieve and then 5223;:,:2; o P4 l
solve the series of reverse-mode integral problems to derive z_, :., ;.  Fixed Input Regressor ==
aajus 2) Run NODEs in reverse-mode to find z;,,, derives target occupancy. T
3. The optimal price vector p* can be calculated as follows: commey TPl oo =
Input

£ 3
«  Zinit=Zgdjust—b

p:

C

— The price optimization can be solved in O(1).
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Experiments (1/4)

Experimental Environments

* Historical data from various periods are derived via feature engineering.
* |n the case of short-term history, the occupancy rate in the past K hours is given as a feature.

* Different K settings lead to different training/testing data as shown below:

Training Dataset Test Dataset
K=1 407,008 183,280
San Francisco | K = 2 356,132 160,370
K=3 305,256 137,460
K=1 75,264 31,360
Seattle K=2 65,856 27,440
K=3 56,448 23,520
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Experiments (2/4)

Prediction

* |n our experiments with two real-world datasets, our prediction model outperforms many
existing temporal and spatiotemporal models.

The results of parking occupancy prediction (mean + std.dev.)

K=1

K

2

K

3

MSE

R2

MSE

R2

MSE

R2

San Francisco

Ours

0.01374 £ 0.00027
0.01701 £+ 0.00027
0.01505 + 0.00039
0.01040 £ 0.00050
0.01022 + 0.00030
0.01021 £ 0.00012

0.60727 £+ 0.00763
0.51369 + 0.01161
0.56983 + 0.01113
0.70287 £+ 0.01419
0.70796 = 0.00851
0.70821 + 0.00329

0.01296 + 0.00223
0.01443 + 0.00321
0.01395 + 0.00334
0.01027 = 0.00045
0.01012 £ 0.00041
0.01001 + 0.00014

0.62080 + 0.00223
0.57783 = 0.00321
0.59187 + 0.00334
0.69969 + 0.01319
0.70404 = 0.01199
0.70727 = 0.00417

0.01373 £ 0.00016
0.01517 + 0.00009
0.01446 = 0.00014
0.01037 + 0.00049
0.01020 + 0.00053
0.01047 = 0.00032

0.59760 £ 0.00457
0.55557 + 0.00261
0.57618 = 0.00406
0.69619 + 0.01433
0.70113 + 0.01534
0.69326 + 0.00938

0.01005 £ 0.00003

0.00980 + 0.00002 0.71985 = 0.00046

0.71278 + 0.00084

0.00994 + 0.00004

0.00975 + 0.00001 0.71473 £ 0.00034

0.70915 + 0.00109

0.01009 = 0.00003

0.00999 + 0.00003 0.70726 + 0.00092

0.70435 + 0.00090

Existing
Method
(only
short-term)

Model
RNN
LSTM
Substitute Eq. (2) with g’II‘{([}JCN
DCRNN
AGCRN
Proposed (full model)
Proposed (w/o final module)
RNN
LSTM
GRU
STGCN
DCRNN
AGCRN
NODE

0.01295 + 0.00004
0.01564 = 0.00020
0.01374 £ 0.00006
0.01119 + 0.00054
0.01125 + 0.00004
0.01092 + 0.00010

0.62994 + 0.00120
0.55307 £ 0.00562
0.60724 + 0.00174
0.68005 + 0.01546
0.67850 = 0.00127
0.68796 + 0.00282

0.01058 + 0.00005 0.69753 + 0.00146

0.01258 + 0.00003
0.01395 £ 0.00005
0.01280 + 0.00006
0.01100 £ 0.00047
0.01077 £+ 0.00002
0.01059 £ 0.00012

0.63189 + 0.00102
0.59198 + 0.00137
0.62547 = 0.00167
0.67825 = 0.01378
0.68493 + 0.00046
0.69012 + 0.00355

0.01055 + 0.00008 0.69123 + 0.00238

0.01321 + 0.01378
0.01476 £+ 0.01378
0.01319 + 0.01378
0.01112 + 0.00077
0.01072 = 0.00005
0.01095 + 0.00066

0.61225 + 0.00145
0.56762 £ 0.00296
0.61344 + 0.00240
0.67407 + 0.02243
0.68578 + 0.00136
0.67913 + 0.01948

0.01063 + 0.00006 0.68840 + 0.00170
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Experiments (3/4)

Prediction

* |n our experiments with two real-world datasets, our prediction model outperforms many
existing temporal and spatiotemporal models.

The results of parking occupancy prediction (mean + std.dev.)

K=1

K

2

K

3

MSE

R2

MSE

R2

MSE

R2

Seattle

Ours

0.02392 £ 0.00015
0.02564 + 0.00034
0.02466 = 0.00010
0.02125 + 0.00029
0.02128 + 0.00023
0.02165 = 0.00009

0.62621 £ 0.00225
0.59918 + 0.00529
0.61449 + 0.00151
0.66792 + 0.00451
0.66740 = 0.00352
0.66162 + 0.00140

0.02721 £ 0.00036
0.02797 = 0.00032
0.02660 + 0.00058
0.02154 + 0.00103
0.02171 %+ 0.00056
0.02170 = 0.00038

0.57511 = 0.00567
0.56323 £ 0.00500
0.58451 £ 0.00902
0.66360 £ 0.01611
0.66094 + 0.00873
0.66137 £ 0.00643

0.02799 + 0.00053
0.03128 + 0.00085
0.02917 £+ 0.00149
0.02183 £ 0.00112
0.02203 £ 0.00088
0.02359 £ 0.00038

0.56240 + 0.00828
0.51106 £ 0.01323
0.54399 + 0.01746
0.65870 £+ 0.01746
0.65556 £ 0.01376
0.63345 £ 0.00610

0.02098 + 0.00006 0.67204 + 0.00088

0.02266 £ 0.00009

0.64580 + 0.00140

0.02331 £ 0.00017

0.02126 + 0.00008 0.66803 + 0.00122

0.63599 + 0.00263

0.02153 + 0.0000
0.02386 + 0.00021

0.66339 + 0.00029

0.62708 + 0.00327

Existing
Method
(only
short-term)

Model
RNN
LSTM
Substitute Eq. (2) with | e
DCRNN
AGCRN
Proposed (full model)
Proposed (w/o final module)
RNN
LSTM
GRU
STGCN
DCRNN
AGCRN
NODE

0.02428 + 0.00002
0.02490 £ 0.00008
0.02427 = 0.00006
0.02148 + 0.00037
0.02416 = 0.00022
0.02158 + 0.00010

0.02138 + 0.00006 0.66596 + 0.00094

0.62045 + 0.00035
0.61076 £+ 0.00118
0.62067 = 0.00088
0.66423 + 0.00574
0.62232 + 0.00338
0.66263 + 0.00158

0.02674 = 0.00010
0.02529 + 0.00013
0.02466 = 0.00004
0.02167 = 0.00007
0.02323 + 0.00047
0.02485 + 0.00217

0.02163 + 0.00005 0.66211 + 0.00078

0.58230 £ 0.00162
0.60497 + 0.00202
0.61491 £ 0.00064
0.66158 £+ 0.00111
0.63721 £ 0.00735
0.61193 £ 0.03388

0.02712 £ 0.00010
0.02720 = 0.00004
0.02548 + 0.00010
0.02179 £ 0.00008
0.02250 £ 0.00036

0.02182 £ 0.00005

0.57598 £ 0.00155
0.57485 £ 0.00063
0.60162 £ 0.00156
0.65931 £ 0.00131
0.64833 + 0.00558

0.02168 + 0.00021 0.66108 + 0.00321

0.65894 + 0.00080

21



Experiments (4/4)

Optimization

* Our one-shot optimization finds better solutions in several orders of magnitude faster in
comparison with other prediction-driven optimization paradigms.

* The optimization performance: the ratio of failed test cases where the optimized occupancy rate exceeds the threshold t

The optimization performance and the average runtime

Optimization Performance | Runtime Optimization Performance | Runtime
T=70% t=75% 7 =280% |(seconds) T=70% Tt=75% 7 =280% |(seconds)
Observed in Data | 0.5475 0.4440 0.3450 N/A Observed in Data | 0.1307 0.1003 0.0756 N/A
[1,2,3] Greedy 0.4685 0.2045 0.0553 446.6343 Greedy 0.1533 0.0917 0.0495 0.5438
""" Gradient-based 0.3606 0.1609 0.0488 0.5471 Gradient-based 0.1739 0.1171 0.0724 0.0042
One-shot (Ours) | 0.1938 0.0065 0.0033 |0.0000007 One-shot (Ours) | 0.0997 0.0684 0.0440 |0.0000007
(a) San Francisco (b) Seattle

[1] An et al. DyETC: Dynamic Electronic Toll Collection for Traffic Congestion Alleviation. AAAI, 2018.
[2] An et al. MAP: Frequency-based maximization of airline profits based on an ensemble forecasting approach. KDD, 2016.
[3] Li et al. Large-Scale Data-Driven Airline Market Influence Maximization. KDD, 2021.
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Case Studies (1/2)

San Francisco

* As shown in the figure, the optimized parking price and — ehormans Whar

the observed parking occupancy rate (the ground truth) E40l Chestia 300 North Point St
are highly correlated.

Downtown
500 Battery St

* The correlation between the mean hourly observed

occupancy rate and the mean optimized price on each |
block is 0.724 in our San Francisco’s test set. 2400 Sacramento st

Civic Center South Embarcadero
500 Franklin St 600 4th St

Missi 83%
ISSION
3200 21st St $10
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Case Studies (2/2)

Seattle

» 1.00

* |In Seattle, the ground-truth occupancy rates are above the B o

ideal range, 60%~ 85%, whereas our method successfully 2 ey

suppresses the occupancy rates on or below the range. S e Ground truth
o Ours

©0.00

»1.00
£0.75
€0.50
30.25
O

©0.00

Ours
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Conclusion

* We presented a one-shot prediction-driven optimization framework which is featured

by i) an effective prediction model for the price-occupancy relation and ii) a one-shot
optimization method.

* Our prediction model is carefully tailored for the price-occupancy relation and
therefore, it outperforms other general spatiotemporal forecasting models.

* Our experiments show that the presented dynamic pricing works well as intended,
outperforming other optimization methods.
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Thank you!
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