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Introduction (1/7)
Prediction-driven Optimal Decision-Making

• Prediction-driven optimal decision-making is to train a prediction model first and adjust 
the actionable input (e.g. price) to optimize prediction results.

• Although the prediction itself is valuable, action must be taken to utilize the prediction result 
and realize its value. 

“A pearl is worthless as long as it is in its shell.”
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Introduction (2/7)
Prediction-driven Optimal Decision-Making

• Prediction-driven optimal decision-making has been implemented by many existing papers. 

• e.g., dynamic toll [1] and airline profit maximization [2,3]

• Based on the prediction results, an optimization problem is solved, either analytically or via 
optimization algorithms. 

• e.g., greedy and gradient-based optimization

[1] An et al. DyETC: Dynamic Electronic Toll Collection for Traffic Congestion Alleviation. AAAI, 2018.
[2] An et al. MAP: Frequency-based maximization of airline profits based on an ensemble forecasting approach. KDD, 2016.

[3] Li et al. Large-Scale Data-Driven Airline Market Influence Maximization. KDD, 2021.
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Introduction (3/7)
Prediction-driven Optimization Dilemma

• Existing approaches failed to solve the prediction-driven optimization dilemma, which 
states that if the speed is high, the quality of the solution is low, and if the quality is high, the 
speed is low.

• However, we propose a “one-shot” prediction-based optimization model that can be quickly 
solved in O(1) and has a high-quality solution.
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Introduction (4/7)
Dynamic Parking Pricing

• Dynamic pricing is to dynamically adjust the price to meet demand. 

• Many metropolitan cities are notorious for severe shortages of parking spots.

• The benefits of dynamic parking pricing

• reduced congestion, reduced time wasted, reduced pollution and increased revenue
6



Introduction (5/7)

• The parking price optimization problem can be formulated as adjusting prices to 
minimize the error between predicted and target occupancy rates.

• Some papers [5,6] have adopted prediction-based optimization, formulating pricing 
schemes based on predicted occupancy rates by implementing various machine learning 
prediction models.

[5] Fabusuyi et al. Rethinking performance based parking pricing: A case study of SFpark. Transportation Research Part A: Policy and Practice 115, 90-101, 2018.
[6] Saharan et al. An efficient smart parking pricing system for smart city environment: A machine-learning based approach. Future Generation Computer Systems 106, 622-640, 2020.
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Introduction (6/7)
Main Contributions

1. We design a sophisticated future parking occupancy prediction model based on NODEs.

2. We propose a novel one-shot price optimization that can find the optimal price with a single 
query, owing to the continuous and bijective characteristics of Neural ODEs.

(a) Existing black-box query-based prediction-driven optimization

(b) Our “one-shot” white-box prediction-driven optimization
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Introduction (7/7)
Main Contributions

3. In our experiments with two real-world datasets, our prediction model outperforms many existing 
temporal and spatiotemporal models.

4. Our one-shot optimization finds better solutions faster in comparison with other prediction-
driven optimization paradigms. 
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Preliminary (1/2)
Neural Ordinary Differential Equations (NODEs)

• We use neural ordinary differential equations [4] for parking occupancy rate prediction.

• NODEs learn differential equations as a neural network. They solve the following integral 
problem to calculate the last hidden vector 𝒛(𝑇) from the initial vector 𝒛(0):

• where 𝑓(𝐳(𝑡); 𝜃!), which we call the ODE function, is a neural network to learn !𝐳($)
!$

.

[4] Chen et al. Neural Ordinary Differential Equations. NeurIPS, 2018. 
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Preliminary (2/2)
Neural Ordinary Differential Equations (NODEs)

Reverse-mode Integral

• Our price optimization corresponds to finding the unique 𝐳∗(0) that leads  𝐳∗(𝑇). 

• For finding 𝐳∗(0), we can solve the below reverse-mode integral problem of NODEs:
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Method (1/5)
Parking Occupancy Prediction

Our prediction model consists of three modules:

1. The initial prediction module with spatiotemporal processing

• This processes the short-term and long-term occupancy rate 
information and produces the initial occupancy rate prediction.
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Method (2/5)
Parking Occupancy Prediction

Our prediction model consists of three modules:

2. The price reflection module with the regressor

• This module adjusts 𝐳!"!# created by the initial prediction module 
to 𝐳$%&'(# ∈ ℝ)×+ by considering the price information p.
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Method (3/5)
Parking Occupancy Prediction

Our prediction model consists of three modules:

3. The final prediction module with a series of NODEs

• This module evolves 𝐳$%&'(# to the final prediction 𝐲
̂
∈ [0,1]()×+). 

• We adopt the following 𝑀 NODE layers:

where the future occupancy prediction 𝐲
̂
= 𝐲"(1).
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Method (4/5)
Parking Price Optimization

Problem definition

• Given the short-term history information {𝐬&}&'() , the long-term history information {𝐥&}&'(* , and the 
target occupancy rates 𝐲∗, we want to find the optimal prices 𝐩∗ that lead 𝐲∗ as follows:

where 𝜉 is our pre-trained occupancy prediction model.

15



Parking Price Optimization

The following three steps comprise the optimization process:
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3. The optimal price vector 𝑝∗ can be calculated as follows:

2. Set the target occupancy rates 𝐲∗ that we want to achieve and then 
00solve the series of reverse-mode integral problems to derive 𝐳"#$%&'∗ .

1. We feed the given short-term and long-term history information and 
00derive 𝐳()(' from the initial prediction module.

Method (5/5)
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Method (5/5)
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Parking Price Optimization

→ The price optimization can be solved in O(1). 

The following three steps comprise the optimization process:
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Experiments (1/4)
Experimental Environments 

• Historical data from various periods are derived via feature engineering. 

• In the case of short-term history, the occupancy rate in the past 𝐾 hours is given as a feature. 

• Different 𝐾 settings lead to different training/testing data as shown below:
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Experiments (2/4)
Prediction

• In our experiments with two real-world datasets, our prediction model outperforms many 
existing temporal and spatiotemporal models.

The results of parking occupancy prediction (mean ± std.dev.)
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Experiments (3/4)
Prediction

• In our experiments with two real-world datasets, our prediction model outperforms many 
existing temporal and spatiotemporal models.

The results of parking occupancy prediction (mean ± std.dev.)
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Experiments (4/4)
Optimization

• Our one-shot optimization finds better solutions in several orders of magnitude faster in 
comparison with other prediction-driven optimization paradigms.

(a) San Francisco (b) Seattle

The optimization performance and the average runtime

* The optimization performance: the ratio of failed test cases where the optimized occupancy rate exceeds the threshold 𝜏
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[1] An et al. DyETC: Dynamic Electronic Toll Collection for Traffic Congestion Alleviation. AAAI, 2018.
[2] An et al. MAP: Frequency-based maximization of airline profits based on an ensemble forecasting approach. KDD, 2016.

[3] Li et al. Large-Scale Data-Driven Airline Market Influence Maximization. KDD, 2021.
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Case Studies (1/2)
San Francisco

• As shown in the figure, the optimized parking price and 
the observed parking occupancy rate (the ground truth) 
are highly correlated. 

• The correlation between the mean hourly observed 
occupancy rate and the mean optimized price on each 
block is 0.724 in our San Francisco’s test set.
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Case Studies (2/2)
Seattle

• In Seattle, the ground-truth occupancy rates are above the 
ideal range, 60%~ 85%, whereas our method successfully 
suppresses the occupancy rates on or below the range.
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• We presented a one-shot prediction-driven optimization framework which is featured 
by i) an effective prediction model for the price-occupancy relation and ii) a one-shot 
optimization method. 

• Our prediction model is carefully tailored for the price-occupancy relation and 
therefore, it outperforms other general spatiotemporal forecasting models. 

• Our experiments show that the presented dynamic pricing works well as intended, 
outperforming other optimization methods. 

Conclusion
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Thank you!
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