SVD-AE: Simple Autoencoders for Collaborative Filtering

Seoyoung Hong¹, Jeongwhan Choi², Yeon-Chang Lee³, Srijan Kumar⁴, Noseong Park⁵

¹Boeing Korea Engineering & Technology Center ²Yonsei University ³UNIST ⁴Georgia Institute of Technology ⁵KAIST ²jeongwhan.choi@yonsei.ac.kr

Pe	erformance	e Compariso	n					
-	Dataset	Measure	LightGCN	GF-CF	MultVAE	EASE	∞-AE	SVD-AE
_	Gowalla	HR@10	14.00	14.08	11.88	13.67	11.77	14.40
		HR@100	37.40	38.84	33.56	35.74	34.20	37.34
		NDCG@10	13.77	13.50	11.30	13.15	10.84	13.94
		NDCG@100	21.04	21.25	18.11	20.08	17.97	21.15
		PSP@10	2.26	2.47	2.09	2.31	2.02	2.48
	Yelp2018	HR@10	4.32	4.87	4.31	4.65	4.62	4.90
		HR@100	19.01	20.86	18.75	17.74	18.33	19.79
		NDCG@10	4.19	4.66	4.10	4.55	4.48	4.74
		NDCG@100	9.57	10.53	9.37	9.37	9.54	10.22
		PSP@10	0.39	0.44	0.43	0.42	0.43	0.45
-	ML-1M	HR@10	29.07	30.81	27.86	30.43	31.15	31.79
		HR@100	57.62	59.10	57.67	57.74	60.75	59.33
		NDCG@10	30.30	32.37	28.44	31.90	32.27	33.55
		NDCG@100	39.95	42.00	39.34	40.95	42.54	42.57
		PSP@10	3.01	3.17	3.13	3.16	3.22	3.22
-	ML-10M	HR@10	34.79	35.10	34.20	36.30	35.83	36.76
		HR@100	64.11	64.23	64.55	64.78	64.48	64.80
		NDCG@10	35.60	36.02	34.48	37.63	36.93	37.75
		NDCG@100	46.14	45.71	45.23	46.74	46.27	46.97
		PSP@10	4.69	4.73	4.82	4.76	4.74	4.93

putation time of various methods on Gowalla.

Figure 1: The best overall balance between 3 goals.

	GF-CF [1]	EASE [2]	∞ -AE [3]	SVD-AE
Closed-form Solution	\checkmark	√	\checkmark	\checkmark
Autoencoder-based	×	\checkmark	\checkmark	\checkmark
Using SVD	\checkmark	×	×	\checkmark
Using Neural Networks	×	×	\checkmark	×

Table 1:Comparison of existing lightweight methods and our SVD-AE.

Table 2:Performance evaluation of overall performance among SVD-AE and baselines

Generalized Linear Autoencoder for Recommender Systems

► The objective function of linear autoencoder is:

$$\min_{\hat{\mathbf{R}}} \|\mathbf{R} - \hat{\mathbf{R}}\|_2^2, \quad \text{s.t.} \quad \mathcal{C},$$

 $\triangleright \mathbf{R} \in \{0,1\}^{|U| \times |I|}$ is the given user-item interaction matrix $\hat{\mathbf{R}} \in \{0,1\}^{|U| \times |I|}$ is the reconstructed interaction matrix

► EASE uses ridge regression with a regularization term:

$$\min_{\mathbf{B}} \|\mathbf{R} - \mathbf{R}\mathbf{B}\|_{F}^{2} + \lambda \cdot \|\mathbf{B}\|_{F}^{2}, \quad \text{s.t.diag}(\mathbf{B}) = 0,$$

 \blacktriangleright ∞ -AE uses Kernelized Ridge Regression:

$$\underset{[\alpha_j]_{j=1}^{|U|}}{\operatorname{argmin}} \quad \sum_{u \in U} \|\mathbf{R}_u - f(\mathbf{R}_u | \alpha)\|_2^2 + \lambda \cdot \|f\|_{\mathcal{H}}^2.$$

Closed-form solutions for optimal R in different methods:

Efficiency Comparison

(1)

(2)

(3)

(4)

Model	ML-1M		ML-10M		
	Pre-processing	Training	Pre-processing	Training	
LightGCN	N/A	2.44h	N/A	132.97h	
GF-CF	4.62s	6.37s	28.98s	1260.80s	
EASE	4.52s	5.72s	52.63s	6.05s	
∞ -AE	N/A	2.24s	N/A	388.39s	
SVD-AE	0.54s	2.06s	47.59s	3.06s	

Table 3:Efficiency comparison on overall computation time.

Robustness on Noise

$$\hat{\mathbf{R}} = \begin{cases} \mathbf{R} \cdot (\mathbf{I} - \hat{\mathbf{P}} \cdot \mathsf{diagMat}(\vec{1} \oslash \mathsf{diag}(\hat{\mathbf{P}}))) & (\mathsf{EASE}), \\ \mathbf{K} \cdot (\mathbf{K} + \lambda \mathbf{I})^{-1} \cdot \mathbf{R} & (\infty - \mathsf{AE}), \\ \tilde{\mathbf{R}} \cdot \mathbf{V} \tilde{\boldsymbol{\Sigma}}^{+} \mathbf{Q}^{T} \mathbf{R} & (\mathsf{SVD-AE}), \end{cases}$$

$$\hat{\mathbf{P}} = (\mathbf{R}^{T} \mathbf{R} + \lambda \mathbf{I})^{-1}.$$

 \triangleright **R** = **D**_U²**RD**_I² is a normalized adjacency matrix.

The Presence of Noise

 \triangleright

- \triangleright R often contains noisy interactions that don't reflect true user preferences.
- \blacktriangleright EASE and ∞ -AE use λ to prevent overfitting to noisy rating matrix.
- Smaller λ minimizes MSE but doesn't guarantee better performance.

Figure 3: The performance comparison with different regularization parameters.

(a) HR@10 (Gowalla) (b) NDCG@10 (Gowalla) Figure 4: Robustness evaluation against noise level.

SVD-AE Method

- **SVD-AE** solves a ridge regression-like problem:
 - $\min_{\mathbf{B}} \|\mathbf{R} \tilde{\mathbf{R}}\mathbf{B}\|^2$
- The regularization term is implicitly handled by truncated SVD.
- ► Novel closed-form solution:

 $\mathbf{B} = \widetilde{\mathbf{R}}^{+}\mathbf{R} = \mathbf{V}\mathbf{\Sigma}^{+}\mathbf{Q}^{T}\mathbf{R},$

- \triangleright Let $\tilde{\mathbf{R}} = \mathbf{Q} \Sigma \mathbf{V}^T$ be the SVD of $\tilde{\mathbf{R}}$, then we can get the pseudo-inverse of \mathbf{R} , \mathbf{R}^+ . $\triangleright \mathbf{Q} \in \mathbb{R}^{|U| \times m}$ and $\mathbf{V} \in \mathbb{R}^{|I| \times m}$ are top-*m* singular vectors
- $\triangleright \Sigma^+$ contains inverse of top-*m* singular values of **R**
- $\triangleright m = |\gamma \times \min(|U|, |I|)|$, where $\gamma = 0.04$ is optimal for all datasets
- ► Low-rank Inductive Bias in **SVD-AE**:
 - Reduces noise (smaller singular values).
 - Speeds up calculations for large, sparse matrices.

References

(5)

(6)

- [1] Yifei Shen, Yongji Wu, Yao Zhang, Caihua Shan, Jun Zhang, B Khaled Letaief, and Dongsheng Li. How powerful is graph convolution for recommendation? In CIKM, 2021.
- [2] Harald Steck. Embarrassingly shallow autoencoders for sparse data. In *TheWebConf*, 2019.
- [3] Noveen Sachdeva, Mehak Preet Dhaliwal, Carole-Jean Wu, and Julian McAuley. Infinite recommendation networks: A data-centric approach. In NeurIPS, 2022.

fieongwhanchoi.me **O** jeongwhanchoi in jeongwhanchoi

