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Existing collaborative filtering methods assume a single training!

MF, NGCF, LightGCN, …
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However, in the real world, we need to train a model periodically as new interactions are incremental!
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Training/testing phase of existing methods
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• A time-series of embedding vectors can be naturally defined as we need to periodically 
train a collaborative filtering algorithm.

Introduction Related Work Method Experiments Conclusion

4

Proposed method, ‘TimeKit’
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• We propose forecasting future embeddings which describe latent behavioral patterns.
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Proposed method, ‘TimeKit’Existing collaborative filtering methods

“Past” “Future”
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‘TimeKit’ 

➡ It is for an incremental recommendation and any CF methods can be used!

A Time-series 
Forecasting-based 

Upgrade Kit for 
Collaborative Filtering



• The comparison between sequential recommendation and our proposed TimeKit 

Related Work
Sequential Recommendation
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?
Sequential Recommendation

TimeKit

Sequential 
Recommendation TimeKit

What does model 
predict? Next items Embeddings

What is the input of 
model? Sequence of items Sequence of 

embeddings

What type of prediction? Point-wise Region-wise??
?



Related Work
Neural Controlled Differential Equations (1/2)

• Neural Ordinary Differential Equations (NODEs) [1]


• A continuous version of ResNet!


• NODEs learn differential equations as a neural network.


• where , which we call the ODE function, is a neural network to learn .f(z(t); θf)
dz(t)

dt
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[1] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordinary differential equations,” Advances in neural information processing systems, 31, 2018.



• Neural Controlled Differential Equations (NCDEs) [2]


• A continuous version of RNN!


• Natural cubic splines were used to construct path X from the time-series x.

Related Work
Neural Controlled Differential Equations (2/2) 
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[2] P. Kidger, J. Morrill, J. Foster, and T. Lyons, “Neural controlled differential equations for irregular time series,” Advances in Neural Information Processing Systems, 33, 6696-6707, 2020.

Fills missing values and ensures that 

X is twice continuously differentiable!



Method
Overall Workflow

• The overall workflow of creating the time-series of embedding vectors and forecasting
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Method
Embedding Forecaster

• From our pre-experiments, we figured out that item embedding vectors are more sensitive to noise, 
which is more difficult to predict.


• So we use a light-weighted model (GRU) for forecasting user embeddings and a high-performance 
model (NCDE) for forecasting item embeddings.

11

Introduction Related Work Method Experiments Conclusion

Time-series of  
user embeddings

Time-series of  
Item embeddings

Predicted future 
rating

Dot Product
Predicted future  
user embedding

Predicted future  
item embedding

Time-series model (GRU)

Time-series model (NCDE)



Experiments
The Visualization of Embedding Dynamics
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(a) User embedding example of LightGCN (b) User embedding example of NGCF (c) Item embedding example of NGCF

• We found that embedding vectors do not change randomly over time but are likely to change 
following hidden dynamics.



• Performance on Amazon-book dataset


• Especially in the case of BPRMF + TimeKit, it even exceeds the original scores of LightGCN and LT-OCF.

Experiments
Performance (1/2)
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Base CF 
algorithm

Base performance + TimeKit Improvement (%)

Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

BPR-MF 0.0496 0.0253 0.0575 0.0303 15.88 19.50

NGCF 0.0359 0.0181 0.0471 0.0252 31.12 39.58

LightGCN 0.0565 0.0294 0.0667 0.0365 17.93 24.17

LT-OCF 0.0573 0.0299 0.0711 0.0393 24.11 31.40



Experiments
Performance (2/2)
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• Performance on Netflix dataset


• TimeKit improves NGCF by 68% for Recall@20 and NDCG@20.

Base CF 
algorithm

Base performance + TimeKit Improvement (%)

Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

BPR-MF 0.0701 0.0405 0.0776 0.0466 10.74 15.07

NGCF 0.0608 0.0380 0.1024 0.0642 68.46 68.75

LightGCN 0.0787 0.0451 0.0823 0.0480 4.52 6.33

LT-OCF 0.0779 0.0446 0.0899 0.0539 15.41 20.92



Experiments
Case Study

• Our model is able to correctly recommend items because it is trained with the latent dynamics of 
the preference distribution changes over time.
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Conclusion

• We presented a novel upgrade kit called TimeKit to forecast the future user/item 
embedding vectors, with which we will perform the collaborative filtering task. 


• We uncover the hidden dynamics to accurately forecast the future embedding vectors. 


• Various collaborative filtering algorithms are significantly improved when being 
upgraded with TimeKit.
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Thank you!
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